Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
the_compton_effect [2022/09/01 20:22] adminthe_compton_effect [2022/10/13 17:36] (current) admin
Line 21: Line 21:
  
 We will use the relativistic energy-momentum relation $E^2 = p^2c^c + m_0c^4$.  Photons are massless, so for the incident photon we have $E = pc$ and for the scattered photon we have $E' = p'c$.  The electron is initially at rest, so $E_0 = m_e c^2$, where $m_e$ is the rest mass of the electron.  For the recoiling electron, we have $E_e = \sqrt{m_e^2 c^4 + P_e^2 c^2}$ or, equivalently $E_e = \sqrt{E_0^2 + P_e^2 c^2}$.  Substituting all of this into the conservation of energy formula gives We will use the relativistic energy-momentum relation $E^2 = p^2c^c + m_0c^4$.  Photons are massless, so for the incident photon we have $E = pc$ and for the scattered photon we have $E' = p'c$.  The electron is initially at rest, so $E_0 = m_e c^2$, where $m_e$ is the rest mass of the electron.  For the recoiling electron, we have $E_e = \sqrt{m_e^2 c^4 + P_e^2 c^2}$ or, equivalently $E_e = \sqrt{E_0^2 + P_e^2 c^2}$.  Substituting all of this into the conservation of energy formula gives
-\[pc + E_0 = p'c + \sqrt{E^2 + P_e^2 c^2},\]+\[pc + E_0 = p'c + \sqrt{E_0^2 + P_e^2 c^2},\]
 and rearranging gives and rearranging gives
-\[E_0 + (p-p')c = \sqrt{E^2 + P_e^2 c^2}.\]+\[E_0 + (p-p')c = \sqrt{E_0^2 + P_e^2 c^2}.\]
 Squaring this equation gives Squaring this equation gives
 \[E_0^2 + (p-p')^2c^2 + 2E_0(p-p')c = E_0^2 + P_e^2c^2,\] \[E_0^2 + (p-p')^2c^2 + 2E_0(p-p')c = E_0^2 + P_e^2c^2,\]