Both sides previous revisionPrevious revisionNext revision | Previous revision |
the_schroedinger_equation [2021/03/17 21:15] – [3.iii.3 The Continuity Equation] admin | the_schroedinger_equation [2021/03/17 21:25] (current) – [3.iii.3 The Continuity Equation] admin |
---|
| |
The next step is to subtract equation \eqref{eq2} from equation \eqref{eq1}, which gives | The next step is to subtract equation \eqref{eq2} from equation \eqref{eq1}, which gives |
\[i\hbar \left [ \psi^*(\vec{r},t)\frac{\partial \psi(\vec{r},t)}{\partial t} + frac{\partial \psi^*(\vec{r},t)}{\partial t}\psi(\vec{r},t) \right ] = -\frac{\hbar^2}{2m} \left [ \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t) - \right \psi(\vec{r},t)\nabla^2 \psi^*(\vec{r},t) \right ].\] | \[i\hbar \left [ \psi^*(\vec{r},t)\frac{\partial \psi(\vec{r},t)}{\partial t} + \frac{\partial \psi^*(\vec{r},t)}{\partial t}\psi(\vec{r},t) \right ] = -\frac{\hbar^2}{2m} \left [ \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t) - \psi(\vec{r},t)\nabla^2 \psi^*(\vec{r},t) \right ].\] |
Before doing anything else, let's just divide both sides of this equation by $i\hbar$, which gives | Before doing anything else, let's just divide both sides of this equation by $i\hbar$, which gives |
\begin{equation} | \begin{equation} |
\label{eq3} | \label{eq3} |
\psi^*(\vec{r},t)\frac{\partial \psi(\vec{r},t)}{\partial t} + frac{\partial \psi^*(\vec{r},t)}{\partial t}\psi(\vec{r},t) = \frac{i\hbar}{2m} \left [ \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t) - \right \psi(\vec{r},t)\nabla^2 \psi^*(\vec{r},t) \right ]. | \psi^*(\vec{r},t)\frac{\partial \psi(\vec{r},t)}{\partial t} + \frac{\partial \psi^*(\vec{r},t)}{\partial t}\psi(\vec{r},t) = \frac{i\hbar}{2m} \left [ \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t) - \psi(\vec{r},t)\nabla^2 \psi^*(\vec{r},t) \right ]. |
\end{equation} | \end{equation} |
| |
Again, by the product rule for derivatives, we have | Again, by the product rule for derivatives, we have |
\begin{align*} | \begin{align*} |
\vec{\nabla} \cdot \vec{J}(\vec{r},t) = \frac{i\hbar}{2m} \left [ \psi(\vec{r},t) \nabla^2 \psi^*(\vec{r},t) + \vec{\nabla}\psi(\vec{r},t) \cdot \vec{\nabla} \psi^*(\vec{r},t) - \vec{\nabla}\psi^*(\vec{r},t) \cdot \vec{\nabla} \psi(\vec{r},t) - \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t)\right ] \\ | \vec{\nabla} \cdot \vec{J}(\vec{r},t) & = \frac{i\hbar}{2m} \left [ \psi(\vec{r},t) \nabla^2 \psi^*(\vec{r},t) + \vec{\nabla}\psi(\vec{r},t) \cdot \vec{\nabla} \psi^*(\vec{r},t) - \vec{\nabla}\psi^*(\vec{r},t) \cdot \vec{\nabla} \psi(\vec{r},t) - \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t)\right ] \\ |
& = \frac{i\hbar}{2m} \left [ \psi(\vec{r},t) \nabla^2 \psi^*(\vec{r},t) + - \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t)\right ]. | & = \frac{i\hbar}{2m} \left [ \psi(\vec{r},t) \nabla^2 \psi^*(\vec{r},t) + - \psi^*(\vec{r},t)\nabla^2 \psi(\vec{r},t)\right ]. |
\end{align*} | \end{align*} |