Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
the_variational_principle [2020/08/24 05:56] – [5.i.4 Finding Excited States] admin | the_variational_principle [2020/08/24 07:02] (current) – [In Class Activities] admin | ||
---|---|---|---|
Line 119: | Line 119: | ||
and for the potential term we have, | and for the potential term we have, | ||
- | \[\langle \hat{T} \rangle = \frac{1}{2}m \omega^2 \int_{-\infty}^{+\infty} \mathrm{d}x \, \psi(x)^* x^2 \psi(x).\] | + | \[\langle \hat{V} \rangle = \frac{1}{2}m \omega^2 \int_{-\infty}^{+\infty} \mathrm{d}x \, \psi(x)^* x^2 \psi(x).\] |
In an in class activity, you will show that these integrals evaluate to $\langle \hat{T}\rangle = \frac{\hbar^2 b}{2m}$ and $\langle \hat{V} \rangle = \frac{m\omega^2}{8b}$, | In an in class activity, you will show that these integrals evaluate to $\langle \hat{T}\rangle = \frac{\hbar^2 b}{2m}$ and $\langle \hat{V} \rangle = \frac{m\omega^2}{8b}$, | ||
Line 296: | Line 296: | ||
| | ||
- For the same Hamiltonian, | - For the same Hamiltonian, | ||
- | \[\langle \hat{V} \rangle = \frac{m\omega^2}{4b}.\] | + | \[\langle \hat{V} \rangle = \frac{m\omega^2}{4b^2}.\] |
| |